Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712627

RESUMEN

Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.


Asunto(s)
Uniones Estrechas , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Humanos , Animales , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/citología
2.
EMBO Rep ; 25(3): 1176-1207, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316902

RESUMEN

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.


Asunto(s)
Cuerpos Basales , Citoesqueleto , Ratones , Animales , Microtúbulos , Cilios , Células Epiteliales
3.
Proc Natl Acad Sci U S A ; 121(10): e2217877121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412124

RESUMEN

Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.


Asunto(s)
Claudina-2 , Sepsis , Animales , Humanos , Ratones , Claudina-2/genética , Claudina-2/metabolismo , Disbiosis/genética , Disbiosis/metabolismo , Funcion de la Barrera Intestinal , Mucosa Intestinal/metabolismo , Permeabilidad , Sepsis/metabolismo , Uniones Estrechas/metabolismo , Regulación hacia Arriba
4.
Ann N Y Acad Sci ; 1523(1): 51-61, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37002535

RESUMEN

Hair follicles (HFs) undergo cyclic phases of growth, regression, and rest in association with hair shafts to maintain the hair coat. Nonsense mutations in the tight junction protein claudin (CLDN)-1 cause hair loss in humans. Therefore, we evaluated the roles of CLDNs in hair retention. Among the 27 CLDN family members, CLDN1, CLDN3, CLDN4, CLDN6, and CLDN7 were expressed in the inner bulge layer, isthmus, and sebaceous gland of murine HFs. Hair phenotypes were observed in Cldn1 weaker knockdown and Cldn3-knockout (Cldn1Δ/Δ Cldn3-/- ) mice. Although hair growth was normal, Cldn1Δ/Δ Cldn3-/- mice showed striking hair loss in the first telogen. Simultaneous deficiencies in CLDN1 and CLDN3 caused abnormalities in telogen HFs, such as an aberrantly layered architecture of epithelial cell sheets in bulges with multiple cell layers, mislocalization of bulges adjacent to sebaceous glands, and dilated hair canals. Along with the telogen HF abnormalities, which shortened the hair retention period, there was an enhanced proliferation of the epithelium surrounding HFs in Cldn1Δ/Δ Cldn3-/- mice, causing accelerated hair regrowth in adults. Our findings suggested that CLDN1 and CLDN3 may regulate hair retention in infant mice by maintaining the appropriate layered architecture of HFs, a deficiency of which can lead to alopecia.


Asunto(s)
Alopecia , Animales , Ratones , Alopecia/genética , Claudina-1/genética , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/metabolismo , Mutación , Envejecimiento
5.
Sci Rep ; 13(1): 2892, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36806348

RESUMEN

Blood-brain barrier (BBB) disruption contributes to brain injury and neurological impairment. Tight junctions (TJs) and cell-cell adhesion complexes develop between endothelial cells in the brain to establish and maintain the BBB. Occludin, the first transmembrane protein identified in TJs, has received intense research interest because numerous in vitro studies have suggested its importance in maintaining BBB integrity. However, its role in maintaining BBB integrity after ischemic stroke is less clear owing to the lack of in vivo evidence. This study aimed to investigate the dynamics and function of occludin across the acute and chronic phases after stroke using occludin-deficient mice. By photochemically induced thrombosis model, the expression of occludin was decreased in brain endothelial cells from ischemic lesions. The neurological function of occludin-deficient mice was continuously impaired compared to that of wild-type mice. BBB integrity evaluated by Evans blue and 0.5-kDa fluorescein in the acute phase and by 10-kDa fluorescein isothiocyanate-labeled dextran in the chronic phase was decreased to a greater extent after stroke in occludin-deficient mice. Furthermore, occludin-deficient mice showed decreased claudin-5 and neovascularization after stroke. Our study reveals that occludin plays an important role from the acute to the chronic phase after ischemic stroke in vivo.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Ocludina/genética , Proteínas de Uniones Estrechas , Barrera Hematoencefálica , Células Endoteliales , Fluoresceína
6.
Sci Adv ; 9(7): eadf6358, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791197

RESUMEN

Liquid-liquid phase separation (LLPS) is involved in various dynamic biological phenomena. In epithelial cells, dynamic regulation of junctional actin filaments tethered to the apical junctional complex (AJC) is critical for maintaining internal homeostasis against external perturbations; however, the role of LLPS in this process remains unknown. Here, after identifying a multifunctional actin nucleator, cordon bleu (Cobl), as an AJC-enriched microtubule-associated protein, we conducted comprehensive in vitro and in vivo analyses. We found that apical microtubules promoted LLPS of Cobl at the AJC, and Cobl actin assembly activity increased upon LLPS. Thus, microtubules spatiotemporally regulated junctional actin assembly for epithelial morphogenesis and paracellular barriers. Collectively, these findings established that LLPS of the actin nucleator Cobl mediated dynamic microtubule-actin cross-talk in junctions, which fine-tuned the epithelial barrier.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Uniones Intercelulares , Microtúbulos/metabolismo
7.
Nat Methods ; 20(1): 131-138, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456783

RESUMEN

In situ cryo electron tomography of cryo focused ion beam milled samples has emerged in recent years as a powerful technique for structural studies of macromolecular complexes in their native cellular environment. However, the possibilities for recording tomographic tilt series in a high-throughput manner are limited, in part by the lamella-shaped samples. Here we utilize a geometrical sample model and optical image shift to record tens of tilt series in parallel, thereby saving time and gaining access to sample areas conventionally used for tracking specimen movement. The parallel cryo electron tomography (PACE-tomo) method achieves a throughput faster than 5 min per tilt series and allows for the collection of sample areas that were previously unreachable, thus maximizing the amount of data from each lamella. Performance testing with ribosomes in vitro and in situ on state-of-the-art and general-purpose microscopes demonstrated the high throughput and quality of PACE-tomo.


Asunto(s)
Tomografía con Microscopio Electrónico , Ribosomas , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/química
8.
Sci Rep ; 11(1): 20224, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642354

RESUMEN

The V-shaped arrangement of hair bundles on cochlear hair cells is critical for auditory sensing. However, regulation of hair bundle arrangements has not been fully understood. Recently, defects in hair bundle arrangement were reported in postnatal Dishevelled-associating protein (ccdc88c, alias Daple)-deficient mice. In the present study, we found that adult Daple-/- mice exhibited hearing disturbances over a broad frequency range through auditory brainstem response testing. Consistently, distorted patterns of hair bundles were detected in almost all regions, more typically in the basal region of the cochlear duct. In adult Daple-/- mice, apical microtubules were irregularly aggregated, and the number of microtubules attached to plasma membranes was decreased. Similar phenotypes were manifested upon nocodazole treatment in a wild type cochlea culture without affecting the microtubule structure of the kinocilium. These results indicate critical role of Daple in hair bundle arrangement through the orchestration of apical microtubule distribution, and thereby in hearing, especially at high frequencies.


Asunto(s)
Proteínas Portadoras/genética , Cóclea/patología , Pérdida Auditiva/patología , Microtúbulos/patología , Estereocilios/patología , Animales , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Cóclea/citología , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Técnicas de Inactivación de Genes , Pérdida Auditiva/genética , Ratones , Microscopía Electrónica de Rastreo , Microtúbulos/metabolismo , Nocodazol/farmacología , Técnicas de Cultivo de Órganos , Estereocilios/metabolismo
9.
Sci Rep ; 11(1): 21110, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702961

RESUMEN

Cryptococcus deneoformans is an opportunistic fungal pathogen that infects the lungs via airborne transmission and frequently causes fatal meningoencephalitis. Claudins (Cldns), a family of proteins with 27 members found in mammals, form the tight junctions within epithelial cell sheets. Cldn-4 and 18 are highly expressed in airway tissues, yet the roles of these claudins in respiratory infections have not been clarified. In the present study, we analyzed the roles of Cldn-4 and lung-specific Cldn-18 (luCldn-18) in host defense against C. deneoformans infection. luCldn-18-deficient mice exhibited increased susceptibility to pulmonary infection, while Cldn-4-deficient mice had normal fungal clearance. In luCldn-18-deficient mice, production of cytokines including IFN-γ was significantly decreased compared to wild-type mice, although infiltration of inflammatory cells including CD4+ T cells into the alveolar space was significantly increased. In addition, luCldn-18 deficiency led to high K+ ion concentrations in bronchoalveolar lavage fluids and also to alveolus acidification. The fungal replication was significantly enhanced both in acidic culture conditions and in the alveolar spaces of luCldn-18-deficient mice, compared with physiological pH conditions and those of wild-type mice, respectively. These results suggest that luCldn-18 may affect the clinical course of cryptococcal infection indirectly through dysregulation of the alveolar space microenvironment.


Asunto(s)
Microambiente Celular/inmunología , Claudinas/deficiencia , Criptococosis/inmunología , Cryptococcus/inmunología , Pulmón/inmunología , Neumonía/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Microambiente Celular/genética , Claudinas/inmunología , Criptococosis/genética , Interferón gamma/genética , Interferón gamma/inmunología , Pulmón/microbiología , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Neumonía/genética , Neumonía/microbiología
10.
Sci Transl Med ; 13(601)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233948

RESUMEN

Mucociliary clearance is an essential lung function that facilitates the removal of inhaled pathogens and foreign matter unidirectionally from the airway tract and is innately achieved by coordinated ciliary beating of multiciliated cells. Should ciliary function become disturbed, mucus can accumulate in the airway causing subsequent obstruction and potentially recurrent pneumonia. However, it has been difficult to recapitulate unidirectional mucociliary flow using human-derived induced pluripotent stem cells (iPSCs) in vitro and the mechanism governing the flow has not yet been elucidated, hampering the proper humanized airway disease modeling. Here, we combine human iPSCs and airway-on-a-chip technology, to demonstrate the effectiveness of fluid shear stress (FSS) for regulating the global axis of multicellular planar cell polarity (PCP), as well as inducing ciliogenesis, thereby contributing to quantifiable unidirectional mucociliary flow. Furthermore, we applied the findings to disease modeling of primary ciliary dyskinesia (PCD), a genetic disease characterized by impaired mucociliary clearance. The application of an airway cell sheet derived from patient-derived iPSCs and their gene-edited counterparts, as well as genetic knockout iPSCs of PCD causative genes, made it possible to recapitulate the abnormal ciliary functions in organized PCP using the airway-on-a-chip. These findings suggest that the disease model of PCD developed here is a potential platform for making diagnoses and identifying therapeutic targets and that airway reconstruction therapy using mechanical stress to regulate PCP might have therapeutic value.


Asunto(s)
Ciliopatías , Células Madre Pluripotentes Inducidas , Cilios , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica
11.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33929515

RESUMEN

Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.


Asunto(s)
Proteínas Portadoras/genética , Cilios/genética , Depuración Mucociliar/genética , Tráquea/crecimiento & desarrollo , Animales , Cuerpos Basales/metabolismo , Polaridad Celular/genética , Células Epiteliales/metabolismo , Ratones , Ratones Noqueados , Microtúbulos/genética , Tráquea/metabolismo
12.
EMBO J ; 40(2): e104712, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33346378

RESUMEN

Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule-associated proteins in the AJC-enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ-, but not at AJ-, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ-associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule-facilitated manner. Our results uncovered a hitherto unknown microtubule-LUZP1 association at TJ-associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Microtúbulos/metabolismo , Uniones Estrechas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Animales , Línea Celular , Pollos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Miosinas/metabolismo , Células Sf9
13.
Gut ; 70(10): 1833-1846, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33293280

RESUMEN

OBJECTIVE: Tissue stem cells are central regulators of organ homoeostasis. We looked for a protein that is exclusively expressed and functionally involved in stem cell activity in rapidly proliferating isthmus stem cells in the stomach corpus. DESIGN: We uncovered the specific expression of Iqgap3 in proliferating isthmus stem cells through immunofluorescence and in situ hybridisation. We performed lineage tracing and transcriptomic analysis of Iqgap3 +isthmus stem cells with the Iqgap3-2A-tdTomato mouse model. Depletion of Iqgap3 revealed its functional importance in maintenance and proliferation of stem cells. We further studied Iqgap3 expression and the associated gene expression changes during tissue repair after tamoxifen-induced damage. Immunohistochemistry revealed elevated expression of Iqgap3 in proliferating regions of gastric tumours from patient samples. RESULTS: Iqgap3 is a highly specific marker of proliferating isthmus stem cells during homoeostasis. Iqgap3+isthmus stem cells give rise to major cell types of the corpus unit. Iqgap3 expression is essential for the maintenance of stem potential. The Ras pathway is a critical partner of Iqgap3 in promoting strong proliferation in isthmus stem cells. The robust induction of Iqgap3 expression following tissue damage indicates an active role for Iqgap3 in tissue regeneration. CONCLUSION: IQGAP3 is a major regulator of stomach epithelial tissue homoeostasis and repair. The upregulation of IQGAP3 in gastric cancer suggests that IQGAP3 plays an important role in cancer cell proliferation.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Mucosa Gástrica/citología , Homeostasis/fisiología , Células Madre/citología , Neoplasias Gástricas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neoplasias Gástricas/tratamiento farmacológico , Tamoxifeno/toxicidad
14.
J Clin Invest ; 130(10): 5197-5208, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32516134

RESUMEN

The tight junction protein claudin-2 is upregulated in disease. Although many studies have linked intestinal barrier loss to local and systemic disease, these have relied on macromolecular probes. In vitro analyses show, however, that these probes cannot be accommodated by size- and charge-selective claudin-2 channels. We sought to define the impact of claudin-2 channels on disease. Transgenic claudin-2 overexpression or IL-13-induced claudin-2 upregulation increased intestinal small cation permeability in vivo. IL-13 did not, however, affect permeability in claudin-2-knockout mice. Claudin-2 is therefore necessary and sufficient to effect size- and charge-selective permeability increases in vivo. In chronic disease, T cell transfer colitis severity was augmented or diminished in claudin-2-transgenic or -knockout mice, respectively. We translated the in vitro observation that casein kinase-2 (CK2) inhibition blocks claudin-2 channel function to prevent acute, IL-13-induced, claudin-2-mediated permeability increases in vivo. In chronic immune-mediated colitis, CK2 inhibition attenuated progression in claudin-2-sufficient, but not claudin-2-knockout, mice, i.e., the effect was claudin-2 dependent. Paracellular flux mediated by claudin-2 channels can therefore promote immune-mediated colitis progression. Although the mechanisms by which claudin-2 channels intensify disease remain to be defined, these data suggest that claudin-2 may be an accessible target in immune-mediated disorders, including inflammatory bowel disease.


Asunto(s)
Claudinas/deficiencia , Colitis/etiología , Animales , Claudinas/genética , Claudinas/metabolismo , Colitis/inmunología , Colitis/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-13/administración & dosificación , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Regulación hacia Arriba
15.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795328

RESUMEN

Epithelial/endothelial cells adhere to each other via cell-cell junctions including tight junctions (TJs) and adherens junctions (AJs). TJs and AJs are spatiotemporally and functionally integrated, and are thus often collectively defined as apical junctional complexes (AJCs), regulating a number of spatiotemporal events including paracellular barrier, selective permeability, apicobasal cell polarity, mechano-sensing, intracellular signaling cascades, and epithelial morphogenesis. Over the past 15 years, it has been acknowledged that adenosine monophosphate (AMP)-activated protein kinase (AMPK), a well-known central regulator of energy metabolism, has a reciprocal association with AJCs. Here, we review the current knowledge of this association and show the following evidences: (1) as an upstream regulator, AJs activate the liver kinase B1 (LKB1)-AMPK axis particularly in response to applied junctional tension, and (2) TJ function and apicobasal cell polarization are downstream targets of AMPK and are promoted by AMPK activation. Although molecular mechanisms underlying these phenomena have not yet been completely elucidated, identifications of novel AMPK effectors in AJCs and AMPK-driven epithelial transcription factors have enhanced our knowledge. More intensive studies along this line would eventually lead to the development of AMPK-based therapies, enabling us to manipulate epithelial/endothelial barrier function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Uniones Estrechas/metabolismo , Animales , Polaridad Celular , Células Endoteliales/citología , Metabolismo Energético , Células Epiteliales/citología , Humanos , Permeabilidad , Transducción de Señal
16.
Sci Rep ; 9(1): 14249, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582806

RESUMEN

Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.


Asunto(s)
Haploinsuficiencia , Proteínas de Choque Térmico/genética , Infertilidad Masculina/genética , Cabeza del Espermatozoide/patología , Espermatozoides/patología , Animales , Eliminación de Gen , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Cabeza del Espermatozoide/metabolismo , Espermatozoides/metabolismo
17.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31399484

RESUMEN

The paracellular barrier function of tight junctions (TJs) in epithelial cell sheets is robustly maintained against mechanical fluctuations, by molecular mechanisms that are poorly understood. Vinculin is an adaptor of a mechanosensory complex at the adherens junction. Here, we generated vinculin KO Eph4 epithelial cells and analyzed their confluent cell-sheet properties. We found that vinculin is dispensable for the basic TJ structural integrity and the paracellular barrier function for larger solutes. However, vinculin is indispensable for the paracellular barrier function for ions. In addition, TJs stochastically showed dynamically distorted patterns in vinculin KO cell sheets. These KO phenotypes were rescued by transfecting full-length vinculin and by relaxing the actomyosin tension with blebbistatin, a myosin II ATPase activity inhibitor. Our findings indicate that vinculin resists mechanical fluctuations to maintain the TJ paracellular barrier function for ions in epithelial cell sheets.


Asunto(s)
Células Epiteliales/citología , Vinculina/genética , Vinculina/metabolismo , Actomiosina/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Iones/metabolismo , Procesos Estocásticos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
18.
Tissue Barriers ; 7(3): e1653748, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31438766

RESUMEN

The barrier function of epithelia and endothelia depends on tight junctions, which are formed by the polymerization of claudins on a scaffold of ZO proteins. Two differentially spliced isoforms of ZO-1 have been described, depending on the presence of the α domain, but the function of this domain is unclear. ZO-1 also contains a C-terminal ZU5 domain, which is involved in a mechano-sensitive intramolecular interaction with the central (ZPSG) region of ZO-1. Here we use immunoblotting and immunofluorescence to map the binding sites for commercially available monoclonal and polyclonal antibodies against ZO-1, and for a new polyclonal antibody (R3) that we developed against the ZO-1 C-terminus. We demonstrate that antibody R40.76 binds to the α domain, and the R3 antibody binds to the ZU5 domain. The (α+) isoform of ZO-1 shows higher expression in epithelial versus endothelial cells, and in differentiated versus undifferentiated primary keratinocytes, suggesting a link to epithelial differentiation and a potential molecular adaptation to junctions subjected to stronger mechanical forces. These results provide new tools and hypotheses to investigate the role of the α and ZU5 domains in ZO-1 mechano-sensing and dynamic interactions with the cytoskeleton and junctional ligands.


Asunto(s)
Epitelio/metabolismo , Queratinocitos/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/fisiología , Animales , Diferenciación Celular , Humanos
19.
Cell Mol Gastroenterol Hepatol ; 8(1): 119-142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30910700

RESUMEN

BACKGROUND & AIMS: Epithelial cells are joined by tight junctions (TJs) to form a cell sheet. In the stomach, epithelial cell sheet forms an essential barrier against gastric material, including gastric acid. Although the decreased expression of stomach-type claudin-18 (stCldn18), a TJ protein, is generally observed in human gastritis and gastric cancer, its pathological roles are not fully understood. We previously reported that mice lacking stCldn18 (stCldn18-/-) exhibit gastric acid leakage through TJs, which induces active gastritis at a young age. Here, we examined the gastric pathologies in mice after long-term stCldn18 deficiency. METHODS: The gastric pathologies in stCldn18-/- mice were sequentially analyzed from youth to old age, and compared to those in humans. To examine the relationship between stCldn18 deficiency-induced gastric pathologies and Wnt-dependent tumorigenesis, we generated Wnt1-overexpressing stCldn18-/- mice. RESULTS: StCldn18-/- mice developed chronic active gastritis at middle age, with expression of the chemoattractant CCL28. At old age, 20-30% of these mice developed gastric tumors with CXCL5 expression, indicative of EMT. In this process, spasmolytic polypeptide-expressing metaplasia (SPEM) cells appeared. Increased expressions of CD44-variants, TLR2, and CXCL5 indicated age-dependent changes in cell characteristics. Some features of the stCldn18-/- mouse gastric tumorigenesis resembled H pylori-infection-related human carcinogenesis. The gastric tumorigenesis was accelerated in Wnt1-overexpressing stCldn18-/- mice, indicating that Wnt is involved in the stCldn18-/- mouse gastric tumorigenesis. CONCLUSIONS: StCldn18 deficiency induced gastric tumorigenesis in mice without H pylori infection. Our findings revealed that several signaling networks, including the cytokine-, stemness-, and Wnt-signaling pathways, may be activated under the stCldn18-deficiency-induced chronic active gastritis to accelerate the gastric tumorigenesis.


Asunto(s)
Claudinas/deficiencia , Gastritis/patología , Neoplasias Gástricas/patología , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gastritis/genética , Humanos , Ratones , Transducción de Señal , Neoplasias Gástricas/genética , Vía de Señalización Wnt , Proteína Wnt1/genética
20.
Nat Commun ; 10(1): 816, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778075

RESUMEN

Tight junction is a cell adhesion apparatus functioning as barrier and/or channel in the paracellular spaces of epithelia. Claudin is the major component of tight junction and polymerizes to form tight junction strands with various morphologies that may correlate with their functions. Here we present the crystal structure of mammalian claudin-3 at 3.6 Å resolution. The third transmembrane helix of claudin-3 is clearly bent compared with that of other subtypes. Structural analysis of additional two mutants with a single mutation representing other subtypes in the third helix indicates that this helix takes a bent or straight structure depending on the residue. The presence or absence of the helix bending changes the positions of residues related to claudin-claudin interactions and affects the morphology and adhesiveness of the tight junction strands. These results evoke a model for tight junction strand formation with different morphologies - straight or curvy strands - observed in native epithelia.


Asunto(s)
Claudina-3/química , Claudina-3/metabolismo , Uniones Estrechas/metabolismo , Animales , Línea Celular , Claudina-3/genética , Cristalografía por Rayos X , Enterotoxinas/química , Enterotoxinas/metabolismo , Ratones , Microscopía Electrónica/métodos , Modelos Moleculares , Mutación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...